
6 | GAUSS'S LAW

Figure 6.1 This chapter introduces the concept of flux, which relates a physical quantity and the area through which it is
flowing. Although we introduce this concept with the electric field, the concept may be used for many other quantities, such as
fluid flow. (credit: modification of work by “Alessandro”/Flickr)
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Introduction
Flux is a general and broadly applicable concept in physics. However, in this chapter, we concentrate on the flux of the
electric field. This allows us to introduce Gauss’s law, which is particularly useful for finding the electric fields of charge
distributions exhibiting spatial symmetry. The main topics discussed here are

1. Electric flux. We define electric flux for both open and closed surfaces.

2. Gauss’s law. We derive Gauss’s law for an arbitrary charge distribution and examine the role of electric flux in
Gauss’s law.

3. Calculating electric fields with Gauss’s law. The main focus of this chapter is to explain how to use Gauss’s law
to find the electric fields of spatially symmetrical charge distributions. We discuss the importance of choosing a
Gaussian surface and provide examples involving the applications of Gauss’s law.

4. Electric fields in conductors. Gauss’s law provides useful insight into the absence of electric fields in conducting
materials.

So far, we have found that the electrostatic field begins and ends at point charges and that the field of a point charge varies
inversely with the square of the distance from that charge. These characteristics of the electrostatic field lead to an important
mathematical relationship known as Gauss’s law. This law is named in honor of the extraordinary German mathematician
and scientist Karl Friedrich Gauss (Figure 6.2). Gauss’s law gives us an elegantly simple way of finding the electric
field, and, as you will see, it can be much easier to use than the integration method described in the previous chapter.
However, there is a catch—Gauss’s law has a limitation in that, while always true, it can be readily applied only for charge
distributions with certain symmetries.
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Figure 6.2 Karl Friedrich Gauss (1777–1855) was a legendary
mathematician of the nineteenth century. Although his major
contributions were to the field of mathematics, he also did
important work in physics and astronomy.

6.1 | Electric Flux

Learning Objectives

By the end of this section, you will be able to:

• Define the concept of flux

• Describe electric flux

• Calculate electric flux for a given situation

The concept of flux describes how much of something goes through a given area. More formally, it is the dot product of a
vector field (in this chapter, the electric field) with an area. You may conceptualize the flux of an electric field as a measure
of the number of electric field lines passing through an area (Figure 6.3). The larger the area, the more field lines go
through it and, hence, the greater the flux; similarly, the stronger the electric field is (represented by a greater density of
lines), the greater the flux. On the other hand, if the area rotated so that the plane is aligned with the field lines, none will
pass through and there will be no flux.

Figure 6.3 The flux of an electric field through the shaded
area captures information about the “number” of electric field
lines passing through the area. The numerical value of the
electric flux depends on the magnitudes of the electric field and
the area, as well as the relative orientation of the area with
respect to the direction of the electric field.
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A macroscopic analogy that might help you imagine this is to put a hula hoop in a flowing river. As you change the angle
of the hoop relative to the direction of the current, more or less of the flow will go through the hoop. Similarly, the amount
of flow through the hoop depends on the strength of the current and the size of the hoop. Again, flux is a general concept;
we can also use it to describe the amount of sunlight hitting a solar panel or the amount of energy a telescope receives from
a distant star, for example.

To quantify this idea, Figure 6.4(a) shows a planar surface S1 of area A1 that is perpendicular to the uniform electric field

E→ = E ŷ . If N field lines pass through S1 , then we know from the definition of electric field lines (Electric Charges

and Fields) that N/A1 ∝ E, or N ∝ EA1.

The quantity EA1 is the electric flux through S1 . We represent the electric flux through an open surface like S1 by the

symbol Φ . Electric flux is a scalar quantity and has an SI unit of newton-meters squared per coulomb ( N · m2 /C ). Notice

that N ∝ EA1 may also be written as N ∝ Φ , demonstrating that electric flux is a measure of the number of field lines

crossing a surface.

Figure 6.4 (a) A planar surface S1 of area A1 is perpendicular to the electric field E j
^

. N field lines cross

surface S1 . (b) A surface S2 of area A2 whose projection onto the xz-plane is S1 .The same number of field lines

cross each surface.

Now consider a planar surface that is not perpendicular to the field. How would we represent the electric flux? Figure
6.4(b) shows a surface S2 of area A2 that is inclined at an angle θ to the xz-plane and whose projection in that plane is

S1 (area A1 ). The areas are related by A2 cos θ = A1. Because the same number of field lines crosses both S1 and S2 ,

the fluxes through both surfaces must be the same. The flux through S2 is therefore Φ = EA1 = EA2 cos θ. Designating

n̂ 2 as a unit vector normal to S2 (see Figure 6.4(b)), we obtain

Φ = E→ · n̂ 2 A2.

Check out this video (https://openstaxcollege.org/l/21fluxsizeangl) to observe what happens to the flux as
the area changes in size and angle, or the electric field changes in strength.

Area Vector

For discussing the flux of a vector field, it is helpful to introduce an area vector A
→

. This allows us to write the last

equation in a more compact form. What should the magnitude of the area vector be? What should the direction of the area
vector be? What are the implications of how you answer the previous question?

The area vector of a flat surface of area A has the following magnitude and direction:

• Magnitude is equal to area (A)
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• Direction is along the normal to the surface ( n̂ ); that is, perpendicular to the surface.

Since the normal to a flat surface can point in either direction from the surface, the direction of the area vector of an open
surface needs to be chosen, as shown in Figure 6.5.

Figure 6.5 The direction of the area vector of an open surface
needs to be chosen; it could be either of the two cases displayed
here. The area vector of a part of a closed surface is defined to
point from the inside of the closed space to the outside. This rule
gives a unique direction.

Since n̂ is a unit normal to a surface, it has two possible directions at every point on that surface (Figure 6.6(a)). For an

open surface, we can use either direction, as long as we are consistent over the entire surface. Part (c) of the figure shows
several cases.

Figure 6.6 (a) Two potential normal vectors arise at every point on a surface. (b) The outward normal
is used to calculate the flux through a closed surface. (c) Only S3 has been given a consistent set of

normal vectors that allows us to define the flux through the surface.

However, if a surface is closed, then the surface encloses a volume. In that case, the direction of the normal vector at any
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point on the surface points from the inside to the outside. On a closed surface such as that of Figure 6.6(b), n̂ is chosen

to be the outward normal at every point, to be consistent with the sign convention for electric charge.

Electric Flux
Now that we have defined the area vector of a surface, we can define the electric flux of a uniform electric field through a
flat area as the scalar product of the electric field and the area vector, as defined in Products of Vectors (http://cnx.org/
content/m58280/latest/) :

(6.1)Φ = E→ · A
→

(uniform E→ , flat su face).

Figure 6.7 shows the electric field of an oppositely charged, parallel-plate system and an imaginary box between the plates.
The electric field between the plates is uniform and points from the positive plate toward the negative plate. A calculation
of the flux of this field through various faces of the box shows that the net flux through the box is zero. Why does the flux
cancel out here?

Figure 6.7 Electric flux through a cube, placed between two
charged plates. Electric flux through the bottom face (ABCD) is

negative, because E→ is in the opposite direction to the normal to

the surface. The electric flux through the top face (FGHK) is positive,
because the electric field and the normal are in the same direction.
The electric flux through the other faces is zero, since the electric
field is perpendicular to the normal vectors of those faces. The net
electric flux through the cube is the sum of fluxes through the six
faces. Here, the net flux through the cube is equal to zero. The
magnitude of the flux through rectangle BCKF is equal to the
magnitudes of the flux through both the top and bottom faces.

The reason is that the sources of the electric field are outside the box. Therefore, if any electric field line enters the volume
of the box, it must also exit somewhere on the surface because there is no charge inside for the lines to land on. Therefore,
quite generally, electric flux through a closed surface is zero if there are no sources of electric field, whether positive or
negative charges, inside the enclosed volume. In general, when field lines leave (or “flow out of”) a closed surface, Φ is

positive; when they enter (or “flow into”) the surface, Φ is negative.

Any smooth, non-flat surface can be replaced by a collection of tiny, approximately flat surfaces, as shown in Figure 6.8.
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If we divide a surface S into small patches, then we notice that, as the patches become smaller, they can be approximated by
flat surfaces. This is similar to the way we treat the surface of Earth as locally flat, even though we know that globally, it is
approximately spherical.

Figure 6.8 A surface is divided into patches to find the flux.

To keep track of the patches, we can number them from 1 through N . Now, we define the area vector for each patch as

the area of the patch pointed in the direction of the normal. Let us denote the area vector for the ith patch by δ A
→

i. (We

have used the symbol δ to remind us that the area is of an arbitrarily small patch.) With sufficiently small patches, we may

approximate the electric field over any given patch as uniform. Let us denote the average electric field at the location of the

ith patch by E→ i.

E→ i = average electric field ver the ith patch.

Therefore, we can write the electric flux Φi through the area of the ith patch as

Φi = E→ i · δ A
→

i (ith patch).

The flux through each of the individual patches can be constructed in this manner and then added to give us an estimate of
the net flux through the entire surface S, which we denote simply as Φ .

Φ = ∑
i = 1

N
Φi = ∑

i = 1

N
E→ i · δ A

→
i (N patch estimate).

This estimate of the flux gets better as we decrease the size of the patches. However, when you use smaller patches, you
need more of them to cover the same surface. In the limit of infinitesimally small patches, they may be considered to have

area dA and unit normal n̂ . Since the elements are infinitesimal, they may be assumed to be planar, and E→ i may be

taken as constant over any element. Then the flux dΦ through an area dA is given by dΦ = E→ · n̂ dA. It is positive

when the angle between E→ i and n̂ is less than 90° and negative when the angle is greater than 90° . The net flux is the

sum of the infinitesimal flux elements over the entire surface. With infinitesimally small patches, you need infinitely many

patches, and the limit of the sum becomes a surface integral. With ∫
S

representing the integral over S,

240 Chapter 6 | Gauss's Law

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



(6.2)Φ = ∫
S

E→ · n̂ dA = ⌠
⌡S

E→ · d A
→

(open surface).

In practical terms, surface integrals are computed by taking the antiderivatives of both dimensions defining the area, with
the edges of the surface in question being the bounds of the integral.

To distinguish between the flux through an open surface like that of Figure 6.4 and the flux through a closed surface (one
that completely bounds some volume), we represent flux through a closed surface by

(6.3)Φ = ∮
S

E→ · n̂ dA = ∮
S

E→ · d A
→

(closed surface)

where the circle through the integral symbol simply means that the surface is closed, and we are integrating over the entire
thing. If you only integrate over a portion of a closed surface, that means you are treating a subset of it as an open surface.

Example 6.1

Flux of a Uniform Electric Field

A constant electric field of magnitude E0 points in the direction of the positive z-axis (Figure 6.9). What is the

electric flux through a rectangle with sides a and b in the (a) xy-plane and in the (b) xz-plane?

Figure 6.9 Calculating the flux of E0 through a rectangular

surface.

Strategy

Apply the definition of flux: Φ = E→ · A
→

(uniform E→ ) , where the definition of dot product is crucial.

Solution

a. In this case, Φ = E→ 0 · A
→

= E0 A = E0 ab.

b. Here, the direction of the area vector is either along the positive y-axis or toward the negative y-axis.
Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

Significance

The relative directions of the electric field and area can cause the flux through the area to be zero.
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Example 6.2

Flux of a Uniform Electric Field through a Closed Surface

A constant electric field of magnitude E0 points in the direction of the positive z-axis (Figure 6.10). What is

the net electric flux through a cube?

Figure 6.10 Calculating the flux of E0 through a closed cubic

surface.

Strategy

Apply the definition of flux: Φ = E→ · A
→

(uniform E→ ) , noting that a closed surface eliminates the ambiguity

in the direction of the area vector.

Solution

Through the top face of the cube, Φ = E→ 0 · A
→

= E0 A.

Through the bottom face of the cube, Φ = E→ 0 · A
→

= −E0 A, because the area vector here points downward.

Along the other four sides, the direction of the area vector is perpendicular to the direction of the electric field.
Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

The net flux is Φnet = E0 A − E0 A + 0 + 0 + 0 + 0 = 0 .

Significance

The net flux of a uniform electric field through a closed surface is zero.

Example 6.3

Electric Flux through a Plane, Integral Method

A uniform electric field E→ of magnitude 10 N/C is directed parallel to the yz-plane at 30° above the xy-plane,

as shown in Figure 6.11. What is the electric flux through the plane surface of area 6.0 m2 located in the
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6.1

xz-plane? Assume that n̂ points in the positive y-direction.

Figure 6.11 The electric field produces a net electric flux
through the surface S.

Strategy

Apply Φ = ∫
S

E→ · n̂ dA , where the direction and magnitude of the electric field are constant.

Solution

The angle between the uniform electric field E→ and the unit normal n̂ to the planar surface is 30° . Since

both the direction and magnitude are constant, E comes outside the integral. All that is left is a surface integral
over dA, which is A. Therefore, using the open-surface equation, we find that the electric flux through the surface
is

Φ = ∫
S

E→ · n̂ dA = EA cos θ

= (10 N/C)(6.0 m2)( cos 30°) = 52 N · m2 /C.

Significance

Again, the relative directions of the field and the area matter, and the general equation with the integral will
simplify to the simple dot product of area and electric field.

Check Your Understanding What angle should there be between the electric field and the surface
shown in Figure 6.11 in the previous example so that no electric flux passes through the surface?
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6.2

Example 6.4

Inhomogeneous Electric Field

What is the total flux of the electric field E→ = cy2 k̂ through the rectangular surface shown in Figure 6.12?

Figure 6.12 Since the electric field is not constant over the
surface, an integration is necessary to determine the flux.

Strategy

Apply Φ = ∫
S

E→ · n̂ dA . We assume that the unit normal n̂ to the given surface points in the positive

z-direction, so n̂ = k̂ . Since the electric field is not uniform over the surface, it is necessary to divide the surface

into infinitesimal strips along which E→ is essentially constant. As shown in Figure 6.12, these strips are

parallel to the x-axis, and each strip has an area dA = b dy.

Solution

From the open surface integral, we find that the net flux through the rectangular surface is

Φ = ∫
S

E→ · n̂ dA = ∫
0

a
(cy2 k̂ ) · k̂ (b dy)

= cb⌠
⌡0

a
y2 dy = 1

3 a3 bc.

Significance

For a non-constant electric field, the integral method is required.

Check Your Understanding If the electric field in Example 6.4 is E→ = mx k̂ , what is the flux

through the rectangular area?
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6.2 | Explaining Gauss’s Law

Learning Objectives

By the end of this section, you will be able to:

• State Gauss’s law

• Explain the conditions under which Gauss’s law may be used

• Apply Gauss’s law in appropriate systems

We can now determine the electric flux through an arbitrary closed surface due to an arbitrary charge distribution. We found
that if a closed surface does not have any charge inside where an electric field line can terminate, then any electric field
line entering the surface at one point must necessarily exit at some other point of the surface. Therefore, if a closed surface
does not have any charges inside the enclosed volume, then the electric flux through the surface is zero. Now, what happens
to the electric flux if there are some charges inside the enclosed volume? Gauss’s law gives a quantitative answer to this
question.

To get a feel for what to expect, let’s calculate the electric flux through a spherical surface around a positive point charge
q, since we already know the electric field in such a situation. Recall that when we place the point charge at the origin of a
coordinate system, the electric field at a point P that is at a distance r from the charge at the origin is given by

E→ P = 1
4πε0

1
r2 r̂ ,

where r̂ is the radial vector from the charge at the origin to the point P. We can use this electric field to find the flux

through the spherical surface of radius r, as shown in Figure 6.13.

Figure 6.13 A closed spherical surface surrounding a point
charge q.

Then we apply Φ = ∫
S

E→ · n̂ dA to this system and substitute known values. On the sphere, n̂ = r̂ and r = R , so for

an infinitesimal area dA,

dΦ = E→ · n̂ dA = 1
4πε0

q
R2 r̂ · r̂ dA = 1

4πε0

q
R2 dA.

We now find the net flux by integrating this flux over the surface of the sphere:

Φ = 1
4πε0

q
R2∮S

dA = 1
4πε0

q
R2(4πR2) = q

ε0
.

where the total surface area of the spherical surface is 4πR2. This gives the flux through the closed spherical surface at

radius r as

(6.4)Φ = q
ε0

.
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A remarkable fact about this equation is that the flux is independent of the size of the spherical surface. This can be directly

attributed to the fact that the electric field of a point charge decreases as 1/r2 with distance, which just cancels the r2 rate

of increase of the surface area.

Electric Field Lines Picture
An alternative way to see why the flux through a closed spherical surface is independent of the radius of the surface is to
look at the electric field lines. Note that every field line from q that pierces the surface at radius R1 also pierces the surface

at R2 (Figure 6.14).

Figure 6.14 Flux through spherical surfaces of radii R1 and

R2 enclosing a charge q are equal, independent of the size of

the surface, since all E-field lines that pierce one surface from
the inside to outside direction also pierce the other surface in the
same direction.

Therefore, the net number of electric field lines passing through the two surfaces from the inside to outside direction is
equal. This net number of electric field lines, which is obtained by subtracting the number of lines in the direction from
outside to inside from the number of lines in the direction from inside to outside gives a visual measure of the electric flux
through the surfaces.

You can see that if no charges are included within a closed surface, then the electric flux through it must be zero. A typical
field line enters the surface at dA1 and leaves at dA2. Every line that enters the surface must also leave that surface. Hence

the net “flow” of the field lines into or out of the surface is zero (Figure 6.15(a)). The same thing happens if charges of
equal and opposite sign are included inside the closed surface, so that the total charge included is zero (part (b)). A surface
that includes the same amount of charge has the same number of field lines crossing it, regardless of the shape or size of the
surface, as long as the surface encloses the same amount of charge (part (c)).
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Figure 6.15 Understanding the flux in terms of field lines. (a) The electric flux through a closed surface due to a charge
outside that surface is zero. (b) Charges are enclosed, but because the net charge included is zero, the net flux through the
closed surface is also zero. (c) The shape and size of the surfaces that enclose a charge does not matter because all surfaces
enclosing the same charge have the same flux.

Statement of Gauss’s Law
Gauss’s law generalizes this result to the case of any number of charges and any location of the charges in the space inside

the closed surface. According to Gauss’s law, the flux of the electric field E→ through any closed surface, also called a

Gaussian surface, is equal to the net charge enclosed (qenc) divided by the permittivity of free space (ε0) :

ΦClosed Surface = qenc
ε0

.

This equation holds for charges of either sign, because we define the area vector of a closed surface to point outward. If the
enclosed charge is negative (see Figure 6.16(b)), then the flux through either S or S ' is negative.

Figure 6.16 The electric flux through any closed surface surrounding a point charge q is
given by Gauss’s law. (a) Enclosed charge is positive. (b) Enclosed charge is negative.

The Gaussian surface does not need to correspond to a real, physical object; indeed, it rarely will. It is a mathematical
construct that may be of any shape, provided that it is closed. However, since our goal is to integrate the flux over it, we
tend to choose shapes that are highly symmetrical.
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If the charges are discrete point charges, then we just add them. If the charge is described by a continuous distribution, then
we need to integrate appropriately to find the total charge that resides inside the enclosed volume. For example, the flux
through the Gaussian surface S of Figure 6.17 is Φ = (q1 + q2 + q5)/ε0. Note that qenc is simply the sum of the point

charges. If the charge distribution were continuous, we would need to integrate appropriately to compute the total charge
within the Gaussian surface.

Figure 6.17 The flux through the Gaussian surface shown,
due to the charge distribution, is Φ = (q1 + q2 + q5)/ε0.

Recall that the principle of superposition holds for the electric field. Therefore, the total electric field at any point, including
those on the chosen Gaussian surface, is the sum of all the electric fields present at this point. This allows us to write Gauss’s
law in terms of the total electric field.

Gauss’s Law

The flux Φ of the electric field E→ through any closed surface S (a Gaussian surface) is equal to the net charge

enclosed (qenc) divided by the permittivity of free space (ε0) :

(6.5)Φ = ∮
S

E→ · n̂ dA = qenc
ε0

.

To use Gauss’s law effectively, you must have a clear understanding of what each term in the equation represents. The field

E→ is the total electric field at every point on the Gaussian surface. This total field includes contributions from charges

both inside and outside the Gaussian surface. However, qenc is just the charge inside the Gaussian surface. Finally, the

Gaussian surface is any closed surface in space. That surface can coincide with the actual surface of a conductor, or it can
be an imaginary geometric surface. The only requirement imposed on a Gaussian surface is that it be closed (Figure 6.18).
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Figure 6.18 A Klein bottle partially filled with a liquid. Could
the Klein bottle be used as a Gaussian surface?

Example 6.5

Electric Flux through Gaussian Surfaces

Calculate the electric flux through each Gaussian surface shown in Figure 6.19.

Figure 6.19 Various Gaussian surfaces and charges.
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Strategy

From Gauss’s law, the flux through each surface is given by qenc/ε0, where qenc is the charge enclosed by that

surface.

Solution

For the surfaces and charges shown, we find

a. Φ = 2.0 µC
ε0

= 2.3 × 105 N · m2 /C.

b. Φ = −2.0 µC
ε0

= −2.3 × 105 N · m2 /C.

c. Φ = 2.0 µC
ε0

= 2.3 × 105 N · m2 /C.

d. Φ = −4.0 µC + 6.0 µC − 1.0 µC
ε0

= 1.1 × 105 N · m2 /C.

e. Φ = 4.0 µC + 6.0 µC − 10.0 µC
ε0

= 0.

Significance

In the special case of a closed surface, the flux calculations become a sum of charges. In the next section, this will
allow us to work with more complex systems.
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6.3 Check Your Understanding Calculate the electric flux through the closed cubical surface for each
charge distribution shown in Figure 6.20.

Figure 6.20 A cubical Gaussian surface with various charge distributions.

Use this simulation (https://openstaxcollege.org/l/21gaussimulat) to adjust the magnitude of the charge
and the radius of the Gaussian surface around it. See how this affects the total flux and the magnitude of the electric
field at the Gaussian surface.

6.3 | Applying Gauss’s Law

Learning Objectives

By the end of this section, you will be able to:

• Explain what spherical, cylindrical, and planar symmetry are

• Recognize whether or not a given system possesses one of these symmetries

• Apply Gauss’s law to determine the electric field of a system with one of these symmetries

Gauss’s law is very helpful in determining expressions for the electric field, even though the law is not directly about the
electric field; it is about the electric flux. It turns out that in situations that have certain symmetries (spherical, cylindrical,
or planar) in the charge distribution, we can deduce the electric field based on knowledge of the electric flux. In these

Chapter 6 | Gauss's Law 251

https://openstaxcollege.org/l/21gaussimulat


systems, we can find a Gaussian surface S over which the electric field has constant magnitude. Furthermore, if E→ is

parallel to n̂ everywhere on the surface, then E→ · n̂ = E. (If E→ and n̂ are antiparallel everywhere on the surface,

then E→ · n̂ = −E. ) Gauss’s law then simplifies to

(6.6)Φ = ∮
S

E→ · n̂ dA = E∮
S

dA = EA = qenc
ε0

,

where A is the area of the surface. Note that these symmetries lead to the transformation of the flux integral into a product
of the magnitude of the electric field and an appropriate area. When you use this flux in the expression for Gauss’s law, you
obtain an algebraic equation that you can solve for the magnitude of the electric field, which looks like

E ~ qenc
ε0 area.

The direction of the electric field at the field point P is obtained from the symmetry of the charge distribution and the type

of charge in the distribution. Therefore, Gauss’s law can be used to determine E→ . Here is a summary of the steps we will

follow:

Problem-Solving Strategy: Gauss’s Law

1. Identify the spatial symmetry of the charge distribution. This is an important first step that allows us to choose
the appropriate Gaussian surface. As examples, an isolated point charge has spherical symmetry, and an infinite
line of charge has cylindrical symmetry.

2. Choose a Gaussian surface with the same symmetry as the charge distribution and identify its consequences.

With this choice, E→ · n̂ is easily determined over the Gaussian surface.

3. Evaluate the integral ∮
S

E→ · n̂ dA over the Gaussian surface, that is, calculate the flux through the surface.

The symmetry of the Gaussian surface allows us to factor E→ · n̂ outside the integral.

4. Determine the amount of charge enclosed by the Gaussian surface. This is an evaluation of the right-hand
side of the equation representing Gauss’s law. It is often necessary to perform an integration to obtain the net
enclosed charge.

5. Evaluate the electric field of the charge distribution. The field may now be found using the results of steps 3
and 4.

Basically, there are only three types of symmetry that allow Gauss’s law to be used to deduce the electric field. They are

• A charge distribution with spherical symmetry

• A charge distribution with cylindrical symmetry

• A charge distribution with planar symmetry

To exploit the symmetry, we perform the calculations in appropriate coordinate systems and use the right kind of Gaussian
surface for that symmetry, applying the remaining four steps.

Charge Distribution with Spherical Symmetry
A charge distribution has spherical symmetry if the density of charge depends only on the distance from a point in space
and not on the direction. In other words, if you rotate the system, it doesn’t look different. For instance, if a sphere of
radius R is uniformly charged with charge density ρ0 then the distribution has spherical symmetry (Figure 6.21(a)). On

the other hand, if a sphere of radius R is charged so that the top half of the sphere has uniform charge density ρ1 and the

bottom half has a uniform charge density ρ2 ≠ ρ1, then the sphere does not have spherical symmetry because the charge
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density depends on the direction (Figure 6.21(b)). Thus, it is not the shape of the object but rather the shape of the charge
distribution that determines whether or not a system has spherical symmetry.

Figure 6.21(c) shows a sphere with four different shells, each with its own uniform charge density. Although this is a
situation where charge density in the full sphere is not uniform, the charge density function depends only on the distance
from the center and not on the direction. Therefore, this charge distribution does have spherical symmetry.

Figure 6.21 Illustrations of spherically symmetrical and nonsymmetrical systems. Different shadings indicate
different charge densities. Charges on spherically shaped objects do not necessarily mean the charges are
distributed with spherical symmetry. The spherical symmetry occurs only when the charge density does not
depend on the direction. In (a), charges are distributed uniformly in a sphere. In (b), the upper half of the sphere
has a different charge density from the lower half; therefore, (b) does not have spherical symmetry. In (c), the
charges are in spherical shells of different charge densities, which means that charge density is only a function
of the radial distance from the center; therefore, the system has spherical symmetry.

One good way to determine whether or not your problem has spherical symmetry is to look at the charge density function
in spherical coordinates, ρ⎛

⎝r, θ, ϕ⎞
⎠ . If the charge density is only a function of r, that is ρ = ρ(r) , then you have spherical

symmetry. If the density depends on θ or ϕ , you could change it by rotation; hence, you would not have spherical

symmetry.

Consequences of symmetry

In all spherically symmetrical cases, the electric field at any point must be radially directed, because the charge and, hence,
the field must be invariant under rotation. Therefore, using spherical coordinates with their origins at the center of the
spherical charge distribution, we can write down the expected form of the electric field at a point P located at a distance r
from the center:

(6.7)Spherical symmetry: E→ P = EP(r) r̂ ,

where r̂ is the unit vector pointed in the direction from the origin to the field point P. The radial component EP of the

electric field can be positive or negative. When EP > 0, the electric field at P points away from the origin, and when

EP < 0, the electric field at P points toward the origin.

Gaussian surface and flux calculations

We can now use this form of the electric field to obtain the flux of the electric field through the Gaussian surface. For
spherical symmetry, the Gaussian surface is a closed spherical surface that has the same center as the center of the charge
distribution. Thus, the direction of the area vector of an area element on the Gaussian surface at any point is parallel to the
direction of the electric field at that point, since they are both radially directed outward (Figure 6.22).
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Figure 6.22 The electric field at any point of the spherical
Gaussian surface for a spherically symmetrical charge
distribution is parallel to the area element vector at that point,
giving flux as the product of the magnitude of electric field and
the value of the area. Note that the radius R of the charge
distribution and the radius r of the Gaussian surface are different
quantities.

The magnitude of the electric field E→ must be the same everywhere on a spherical Gaussian surface concentric with the

distribution. For a spherical surface of radius r,

Φ = ∮
S

E→ P · n̂ dA = EP∮
S

dA = EP 4πr2.

Using Gauss’s law

According to Gauss’s law, the flux through a closed surface is equal to the total charge enclosed within the closed surface
divided by the permittivity of vacuum ε0 . Let qenc be the total charge enclosed inside the distance r from the origin, which

is the space inside the Gaussian spherical surface of radius r. This gives the following relation for Gauss’s law:

4πr2 E = qenc
ε0

.

Hence, the electric field at point P that is a distance r from the center of a spherically symmetrical charge distribution has
the following magnitude and direction:

(6.8)Magnitude: E(r) = 1
4πε0

qenc
r2

Direction: radial from O to P or from P to O.

The direction of the field at point P depends on whether the charge in the sphere is positive or negative. For a net positive
charge enclosed within the Gaussian surface, the direction is from O to P, and for a net negative charge, the direction is
from P to O. This is all we need for a point charge, and you will notice that the result above is identical to that for a point
charge. However, Gauss’s law becomes truly useful in cases where the charge occupies a finite volume.

Computing enclosed charge

The more interesting case is when a spherical charge distribution occupies a volume, and asking what the electric field
inside the charge distribution is thus becomes relevant. In this case, the charge enclosed depends on the distance r of the
field point relative to the radius of the charge distribution R, such as that shown in Figure 6.23.
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Figure 6.23 A spherically symmetrical charge distribution and the Gaussian surface used for finding the
field (a) inside and (b) outside the distribution.

If point P is located outside the charge distribution—that is, if r ≥ R —then the Gaussian surface containing P encloses

all charges in the sphere. In this case, qenc equals the total charge in the sphere. On the other hand, if point P is within

the spherical charge distribution, that is, if r < R, then the Gaussian surface encloses a smaller sphere than the sphere of

charge distribution. In this case, qenc is less than the total charge present in the sphere. Referring to Figure 6.23, we can

write qenc as

qenc =
⎧

⎩
⎨
qtot(total charge) if r ≥ R
qwithin r < R(only charge within r < R) if r < R.

The field at a point outside the charge distribution is also called E→ out , and the field at a point inside the charge distribution

is called E→ in. Focusing on the two types of field points, either inside or outside the charge distribution, we can now write

the magnitude of the electric field as

(6.9)P outside sphere Eout = 1
4πε0

qtot
r2

(6.10)P inside sphere Ein = 1
4πε0

qwithin r < R
r2 .

Note that the electric field outside a spherically symmetrical charge distribution is identical to that of a point charge at the
center that has a charge equal to the total charge of the spherical charge distribution. This is remarkable since the charges
are not located at the center only. We now work out specific examples of spherical charge distributions, starting with the
case of a uniformly charged sphere.

Example 6.6

Uniformly Charged Sphere

A sphere of radius R, such as that shown in Figure 6.23, has a uniform volume charge density ρ0 . Find the

electric field at a point outside the sphere and at a point inside the sphere.

Strategy

Apply the Gauss’s law problem-solving strategy, where we have already worked out the flux calculation.

Solution

The charge enclosed by the Gaussian surface is given by
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qenc = ∫ ρ0 dV = ∫
0

r
ρ0 4πr′2 dr′ = ρ0

⎛
⎝
4
3πr3⎞

⎠.

The answer for electric field amplitude can then be written down immediately for a point outside the sphere,
labeled Eout, and a point inside the sphere, labeled Ein.

Eout = 1
4πε0

qtot
r2 , qtot = 4

3πR3 ρ0,

Ein = qenc
4πε0 r2 = ρ0 r

3ε0
, since qenc = 4

3πr3 ρ0.

It is interesting to note that the magnitude of the electric field increases inside the material as you go out, since the
amount of charge enclosed by the Gaussian surface increases with the volume. Specifically, the charge enclosed

grows ∝ r3 , whereas the field from each infinitesimal element of charge drops off ∝ 1/r2 with the net result

that the electric field within the distribution increases in strength linearly with the radius. The magnitude of the
electric field outside the sphere decreases as you go away from the charges, because the included charge remains
the same but the distance increases. Figure 6.24 displays the variation of the magnitude of the electric field with
distance from the center of a uniformly charged sphere.

Figure 6.24 Electric field of a uniformly charged, non-
conducting sphere increases inside the sphere to a maximum at

the surface and then decreases as 1/r2 . Here, ER = ρ0 R
3ε0

. The

electric field is due to a spherical charge distribution of uniform
charge density and total charge Q as a function of distance from
the center of the distribution.

The direction of the electric field at any point P is radially outward from the origin if ρ0 is positive, and inward

(i.e., toward the center) if ρ0 is negative. The electric field at some representative space points are displayed in

Figure 6.25 whose radial coordinates r are r = R/2 , r = R , and r = 2R .
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Figure 6.25 Electric field vectors inside and outside a uniformly charged
sphere.

Significance

Notice that Eout has the same form as the equation of the electric field of an isolated point charge. In determining

the electric field of a uniform spherical charge distribution, we can therefore assume that all of the charge inside
the appropriate spherical Gaussian surface is located at the center of the distribution.

Example 6.7

Non-Uniformly Charged Sphere

A non-conducting sphere of radius R has a non-uniform charge density that varies with the distance from its center
as given by

ρ(r) = arn (r ≤ R; n ≥ 0),

where a is a constant. We require n ≥ 0 so that the charge density is not undefined at r = 0 . Find the electric

field at a point outside the sphere and at a point inside the sphere.

Strategy

Apply the Gauss’s law strategy given above, where we work out the enclosed charge integrals separately for cases
inside and outside the sphere.

Solution

Since the given charge density function has only a radial dependence and no dependence on direction, we have a
spherically symmetrical situation. Therefore, the magnitude of the electric field at any point is given above and
the direction is radial. We just need to find the enclosed charge qenc, which depends on the location of the field

point.
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A note about symbols: We use r′ for locating charges in the charge distribution and r for locating the field

point(s) at the Gaussian surface(s). The letter R is used for the radius of the charge distribution.

As charge density is not constant here, we need to integrate the charge density function over the volume enclosed
by the Gaussian surface. Therefore, we set up the problem for charges in one spherical shell, say between r′
and r′ + dr′, as shown in Figure 6.26. The volume of charges in the shell of infinitesimal width is equal to

the product of the area of surface 4πr′2 and the thickness dr′ . Multiplying the volume with the density at this

location, which is ar′n , gives the charge in the shell:

dq = ar′n 4πr′2 dr′.

Figure 6.26 Spherical symmetry with non-uniform charge
distribution. In this type of problem, we need four radii: R is the
radius of the charge distribution, r is the radius of the Gaussian
surface, r′ is the inner radius of the spherical shell, and

r′ + dr′ is the outer radius of the spherical shell. The spherical

shell is used to calculate the charge enclosed within the
Gaussian surface. The range for r′ is from 0 to r for the field at

a point inside the charge distribution and from 0 to R for the
field at a point outside the charge distribution. If r > R , then

the Gaussian surface encloses more volume than the charge
distribution, but the additional volume does not contribute to
qenc .

(a) Field at a point outside the charge distribution. In this case, the Gaussian surface, which contains the field
point P, has a radius r that is greater than the radius R of the charge distribution, r > R . Therefore, all charges of

the charge distribution are enclosed within the Gaussian surface. Note that the space between r′ = R and r′ = r
is empty of charges and therefore does not contribute to the integral over the volume enclosed by the Gaussian
surface:

qenc = ∫ dq = ∫
0

R
ar′n 4πr′2 dr′ = 4πa

n + 3Rn + 3.

This is used in the general result for E→ out above to obtain the electric field at a point outside the charge

distribution as
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6.4

E→ out = ⎡
⎣

aRn + 3

ε0(n + 3)
⎤
⎦

1
r2 r̂ ,

where r̂ is a unit vector in the direction from the origin to the field point at the Gaussian surface.

(b) Field at a point inside the charge distribution. The Gaussian surface is now buried inside the charge
distribution, with r < R . Therefore, only those charges in the distribution that are within a distance r of the center

of the spherical charge distribution count in renc :

qenc = ⌠
⌡0

r
ar′n 4πr′2 dr′ = 4πa

n + 3rn + 3.

Now, using the general result above for E→ in, we find the electric field at a point that is a distance r from the

center and lies within the charge distribution as

E→ in = ⎡
⎣

a
ε0(n + 3)

⎤
⎦rn + 1 r̂ ,

where the direction information is included by using the unit radial vector.

Check Your Understanding Check that the electric fields for the sphere reduce to the correct values for
a point charge.

Charge Distribution with Cylindrical Symmetry
A charge distribution has cylindrical symmetry if the charge density depends only upon the distance r from the axis of a
cylinder and must not vary along the axis or with direction about the axis. In other words, if your system varies if you rotate
it around the axis, or shift it along the axis, you do not have cylindrical symmetry.

Figure 6.27 shows four situations in which charges are distributed in a cylinder. A uniform charge density ρ0. in an

infinite straight wire has a cylindrical symmetry, and so does an infinitely long cylinder with constant charge density ρ0.
An infinitely long cylinder that has different charge densities along its length, such as a charge density ρ1 for z > 0 and

ρ2 ≠ ρ1 for z < 0 , does not have a usable cylindrical symmetry for this course. Neither does a cylinder in which charge

density varies with the direction, such as a charge density ρ1 for 0 ≤ θ < π and ρ2 ≠ ρ1 for π ≤ θ < 2π . A system with

concentric cylindrical shells, each with uniform charge densities, albeit different in different shells, as in Figure 6.27(d),
does have cylindrical symmetry if they are infinitely long. The infinite length requirement is due to the charge density
changing along the axis of a finite cylinder. In real systems, we don’t have infinite cylinders; however, if the cylindrical
object is considerably longer than the radius from it that we are interested in, then the approximation of an infinite cylinder
becomes useful.
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Figure 6.27 To determine whether a given charge distribution has cylindrical symmetry,
look at the cross-section of an “infinitely long” cylinder. If the charge density does not
depend on the polar angle of the cross-section or along the axis, then you have cylindrical
symmetry. (a) Charge density is constant in the cylinder; (b) upper half of the cylinder has a
different charge density from the lower half; (c) left half of the cylinder has a different
charge density from the right half; (d) charges are constant in different cylindrical rings, but
the density does not depend on the polar angle. Cases (a) and (d) have cylindrical symmetry,
whereas (b) and (c) do not.

Consequences of symmetry

In all cylindrically symmetrical cases, the electric field E→ P at any point P must also display cylindrical symmetry.

Cylindrical symmetry: E→ P = EP(r) r̂ ,

where r is the distance from the axis and r̂ is a unit vector directed perpendicularly away from the axis (Figure 6.28).

Figure 6.28 The electric field in a cylindrically symmetrical
situation depends only on the distance from the axis. The
direction of the electric field is pointed away from the axis for
positive charges and toward the axis for negative charges.

Gaussian surface and flux calculation

To make use of the direction and functional dependence of the electric field, we choose a closed Gaussian surface in the
shape of a cylinder with the same axis as the axis of the charge distribution. The flux through this surface of radius s and
height L is easy to compute if we divide our task into two parts: (a) a flux through the flat ends and (b) a flux through the
curved surface (Figure 6.29).
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Figure 6.29 The Gaussian surface in the case of cylindrical
symmetry. The electric field at a patch is either parallel or
perpendicular to the normal to the patch of the Gaussian surface.

The electric field is perpendicular to the cylindrical side and parallel to the planar end caps of the surface. The flux through
the cylindrical part is

⌠
⌡S

E→ · n̂ dA = E∫
S

dA = E(2πrL),

whereas the flux through the end caps is zero because E→ · n̂ = 0 there. Thus, the flux is

∫
S

E→ · n̂ dA = E(2πrL) + 0 + 0 = 2πrLE.

Using Gauss’s law

According to Gauss’s law, the flux must equal the amount of charge within the volume enclosed by this surface, divided by
the permittivity of free space. When you do the calculation for a cylinder of length L, you find that qenc of Gauss’s law is

directly proportional to L. Let us write it as charge per unit length (λenc) times length L:

qenc = λenc L.

Hence, Gauss’s law for any cylindrically symmetrical charge distribution yields the following magnitude of the electric field
a distance s away from the axis:

Magnitude: E(r) = λenc
2πε0

1
r .

The charge per unit length λenc depends on whether the field point is inside or outside the cylinder of charge distribution,

just as we have seen for the spherical distribution.

Computing enclosed charge

Let R be the radius of the cylinder within which charges are distributed in a cylindrically symmetrical way. Let the field
point P be at a distance s from the axis. (The side of the Gaussian surface includes the field point P.) When r > R (that is,

when P is outside the charge distribution), the Gaussian surface includes all the charge in the cylinder of radius R and length
L. When r < R (P is located inside the charge distribution), then only the charge within a cylinder of radius s and length L

is enclosed by the Gaussian surface:

λenc L =
⎧

⎩
⎨
(total charge) if r ≥ R
(only charge within r < R) if r < R

.
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Example 6.8

Uniformly Charged Cylindrical Shell

A very long non-conducting cylindrical shell of radius R has a uniform surface charge density σ0. Find the

electric field (a) at a point outside the shell and (b) at a point inside the shell.

Strategy

Apply the Gauss’s law strategy given earlier, where we treat the cases inside and outside the shell separately.

Solution
a. Electric field at a point outside the shell. For a point outside the cylindrical shell, the Gaussian surface

is the surface of a cylinder of radius r > R and length L, as shown in Figure 6.30. The charge enclosed

by the Gaussian cylinder is equal to the charge on the cylindrical shell of length L. Therefore, λenc is

given by

λenc = σ0 2π RL
L = 2π Rσ0.

Figure 6.30 A Gaussian surface surrounding a cylindrical
shell.

Hence, the electric field at a point P outside the shell at a distance r away from the axis is

E→ = 2πRσ0
2πεo

1
r r̂ = Rσ0

εo
1
r r̂ (r > R)

where r̂ is a unit vector, perpendicular to the axis and pointing away from it, as shown in the figure.

The electric field at P points in the direction of r̂ given in Figure 6.30 if σ0 > 0 and in the opposite

direction to r̂ if σ0 < 0 .

b. Electric field at a point inside the shell. For a point inside the cylindrical shell, the Gaussian surface is
a cylinder whose radius r is less than R (Figure 6.31). This means no charges are included inside the
Gaussian surface:

λenc = 0.
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6.5

Figure 6.31 A Gaussian surface within a cylindrical shell.

This gives the following equation for the magnitude of the electric field Ein at a point whose r is less

than R of the shell of charges.

Ein 2πrL = 0 (r < R),

This gives us

Ein = 0 (r < R).

Significance

Notice that the result inside the shell is exactly what we should expect: No enclosed charge means zero electric
field. Outside the shell, the result becomes identical to a wire with uniform charge Rσ0.

Check Your Understanding A thin straight wire has a uniform linear charge density λ0. Find the

electric field at a distance d from the wire, where d is much less than the length of the wire.

Charge Distribution with Planar Symmetry
A planar symmetry of charge density is obtained when charges are uniformly spread over a large flat surface. In planar
symmetry, all points in a plane parallel to the plane of charge are identical with respect to the charges.

Consequences of symmetry

We take the plane of the charge distribution to be the xy-plane and we find the electric field at a space point P with
coordinates (x, y, z). Since the charge density is the same at all (x, y)-coordinates in the z = 0 plane, by symmetry, the

electric field at P cannot depend on the x- or y-coordinates of point P, as shown in Figure 6.32. Therefore, the electric
field at P can only depend on the distance from the plane and has a direction either toward the plane or away from the plane.
That is, the electric field at P has only a nonzero z-component.

Uniform charges in xy plane: E→ = E(z) ẑ

where z is the distance from the plane and ẑ is the unit vector normal to the plane. Note that in this system,

E(z) = E(−z), although of course they point in opposite directions.
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Figure 6.32 The components of the electric field parallel to a
plane of charges cancel out the two charges located
symmetrically from the field point P. Therefore, the field at any
point is pointed vertically from the plane of charges. For any
point P and charge q1, we can always find a q2 with this

effect.

Gaussian surface and flux calculation

In the present case, a convenient Gaussian surface is a box, since the expected electric field points in one direction only. To
keep the Gaussian box symmetrical about the plane of charges, we take it to straddle the plane of the charges, such that one
face containing the field point P is taken parallel to the plane of the charges. In Figure 6.33, sides I and II of the Gaussian
surface (the box) that are parallel to the infinite plane have been shaded. They are the only surfaces that give rise to nonzero
flux because the electric field and the area vectors of the other faces are perpendicular to each other.

Figure 6.33 A thin charged sheet and the Gaussian box for
finding the electric field at the field point P. The normal to each
face of the box is from inside the box to outside. On two faces of
the box, the electric fields are parallel to the area vectors, and on
the other four faces, the electric fields are perpendicular to the
area vectors.

Let A be the area of the shaded surface on each side of the plane and EP be the magnitude of the electric field at point

P. Since sides I and II are at the same distance from the plane, the electric field has the same magnitude at points in these
planes, although the directions of the electric field at these points in the two planes are opposite to each other.

Magnitude at I or II: E(z) = EP.

If the charge on the plane is positive, then the direction of the electric field and the area vectors are as shown in Figure
6.33. Therefore, we find for the flux of electric field through the box

(6.11)Φ = ∮
S

E→ P · n̂ dA = EP A + EP A + 0 + 0 + 0 + 0 = 2EP A

where the zeros are for the flux through the other sides of the box. Note that if the charge on the plane is negative, the
directions of electric field and area vectors for planes I and II are opposite to each other, and we get a negative sign for the
flux. According to Gauss’s law, the flux must equal qenc /ε0 . From Figure 6.33, we see that the charges inside the volume
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enclosed by the Gaussian box reside on an area A of the xy-plane. Hence,

(6.12)qenc = σ0 A.

Using the equations for the flux and enclosed charge in Gauss’s law, we can immediately determine the electric field at a
point at height z from a uniformly charged plane in the xy-plane:

E→ P = σ0
2ε0

n̂ .

The direction of the field depends on the sign of the charge on the plane and the side of the plane where the field point P is

located. Note that above the plane, n̂ = + ẑ , while below the plane, n̂ = − ẑ .

You may be surprised to note that the electric field does not actually depend on the distance from the plane; this is an effect
of the assumption that the plane is infinite. In practical terms, the result given above is still a useful approximation for finite
planes near the center.

6.4 | Conductors in Electrostatic Equilibrium

Learning Objectives

By the end of this section, you will be able to:

• Describe the electric field within a conductor at equilibrium

• Describe the electric field immediately outside the surface of a charged conductor at
equilibrium

• Explain why if the field is not as described in the first two objectives, the conductor is not at
equilibrium

So far, we have generally been working with charges occupying a volume within an insulator. We now study what happens
when free charges are placed on a conductor. Generally, in the presence of a (generally external) electric field, the free
charge in a conductor redistributes and very quickly reaches electrostatic equilibrium. The resulting charge distribution and
its electric field have many interesting properties, which we can investigate with the help of Gauss’s law and the concept of
electric potential.

The Electric Field inside a Conductor Vanishes
If an electric field is present inside a conductor, it exerts forces on the free electrons (also called conduction electrons),
which are electrons in the material that are not bound to an atom. These free electrons then accelerate. However, moving
charges by definition means nonstatic conditions, contrary to our assumption. Therefore, when electrostatic equilibrium is
reached, the charge is distributed in such a way that the electric field inside the conductor vanishes.

If you place a piece of a metal near a positive charge, the free electrons in the metal are attracted to the external positive
charge and migrate freely toward that region. The region the electrons move to then has an excess of electrons over the
protons in the atoms and the region from where the electrons have migrated has more protons than electrons. Consequently,
the metal develops a negative region near the charge and a positive region at the far end (Figure 6.34). As we saw in
the preceding chapter, this separation of equal magnitude and opposite type of electric charge is called polarization. If you
remove the external charge, the electrons migrate back and neutralize the positive region.
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Figure 6.34 Polarization of a metallic sphere by an external
point charge +q . The near side of the metal has an opposite

surface charge compared to the far side of the metal. The sphere
is said to be polarized. When you remove the external charge,
the polarization of the metal also disappears.

The polarization of the metal happens only in the presence of external charges. You can think of this in terms of electric
fields. The external charge creates an external electric field. When the metal is placed in the region of this electric field,
the electrons and protons of the metal experience electric forces due to this external electric field, but only the conduction
electrons are free to move in the metal over macroscopic distances. The movement of the conduction electrons leads to the
polarization, which creates an induced electric field in addition to the external electric field (Figure 6.35). The net electric
field is a vector sum of the fields of +q and the surface charge densities −σA and +σB. This means that the net field

inside the conductor is different from the field outside the conductor.

Figure 6.35 In the presence of an external charge q, the
charges in a metal redistribute. The electric field at any point has
three contributions, from +q and the induced charges −σA
and +σB. Note that the surface charge distribution will not be

uniform in this case.

The redistribution of charges is such that the sum of the three contributions at any point P inside the conductor is

E→ P = E→ q + E→ B + E→ A = 0
→

.

Now, thanks to Gauss’s law, we know that there is no net charge enclosed by a Gaussian surface that is solely within the
volume of the conductor at equilibrium. That is, qenc = 0 and hence

(6.13)E→ net = 0
→

(at points inside a conductor).

Charge on a Conductor
An interesting property of a conductor in static equilibrium is that extra charges on the conductor end up on the outer
surface of the conductor, regardless of where they originate. Figure 6.36 illustrates a system in which we bring an external
positive charge inside the cavity of a metal and then touch it to the inside surface. Initially, the inside surface of the cavity is
negatively charged and the outside surface of the conductor is positively charged. When we touch the inside surface of the
cavity, the induced charge is neutralized, leaving the outside surface and the whole metal charged with a net positive charge.
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Figure 6.36 Electric charges on a conductor migrate to the outside surface no
matter where you put them initially.

To see why this happens, note that the Gaussian surface in Figure 6.37 (the dashed line) follows the contour of the actual
surface of the conductor and is located an infinitesimal distance within it. Since E = 0 everywhere inside a conductor,

∮
s

E→ · n̂dA = 0.

Thus, from Gauss’s law, there is no net charge inside the Gaussian surface. But the Gaussian surface lies just below the
actual surface of the conductor; consequently, there is no net charge inside the conductor. Any excess charge must lie on its
surface.

Figure 6.37 The dashed line represents a Gaussian surface
that is just beneath the actual surface of the conductor.

This particular property of conductors is the basis for an extremely accurate method developed by Plimpton and Lawton
in 1936 to verify Gauss’s law and, correspondingly, Coulomb’s law. A sketch of their apparatus is shown in Figure 6.38.
Two spherical shells are connected to one another through an electrometer E, a device that can detect a very slight amount
of charge flowing from one shell to the other. When switch S is thrown to the left, charge is placed on the outer shell by the
battery B. Will charge flow through the electrometer to the inner shell?

No. Doing so would mean a violation of Gauss’s law. Plimpton and Lawton did not detect any flow and, knowing the

sensitivity of their electrometer, concluded that if the radial dependence in Coulomb’s law were 1/r (2 + δ)
, δ would be less

than 2 × 10−9 [1]. More recent measurements place δ at less than 3 × 10−16 [2], a number so small that the validity of

Coulomb’s law seems indisputable.

1. S. Plimpton and W. Lawton. 1936. “A Very Accurate Test of Coulomb’s Law of Force between Charges.” Physical
Review 50, No. 11: 1066, doi:10.1103/PhysRev.50.1066
2. E. Williams, J. Faller, and H. Hill. 1971. “New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on
the Photon Rest Mass.” Physical Review Letters 26 , No. 12: 721, doi:10.1103/PhysRevLett.26.721
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Figure 6.38 A representation of the apparatus used by Plimpton and Lawton.
Any transfer of charge between the spheres is detected by the electrometer E.

The Electric Field at the Surface of a Conductor
If the electric field had a component parallel to the surface of a conductor, free charges on the surface would move, a
situation contrary to the assumption of electrostatic equilibrium. Therefore, the electric field is always perpendicular to the
surface of a conductor.

At any point just above the surface of a conductor, the surface charge density σ and the magnitude of the electric field E

are related by

(6.14)E = σ
ε0

.

To see this, consider an infinitesimally small Gaussian cylinder that surrounds a point on the surface of the conductor, as
in Figure 6.39. The cylinder has one end face inside and one end face outside the surface. The height and cross-sectional
area of the cylinder are δ and ΔA , respectively. The cylinder’s sides are perpendicular to the surface of the conductor, and

its end faces are parallel to the surface. Because the cylinder is infinitesimally small, the charge density σ is essentially

constant over the surface enclosed, so the total charge inside the Gaussian cylinder is σΔA . Now E is perpendicular to the

surface of the conductor outside the conductor and vanishes within it, because otherwise, the charges would accelerate, and
we would not be in equilibrium. Electric flux therefore crosses only the outer end face of the Gaussian surface and may be
written as EΔA , since the cylinder is assumed to be small enough that E is approximately constant over that area. From

Gauss’ law,

EΔA = σΔA
ε0

.

Thus,

E = σ
ε0

.
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Figure 6.39 An infinitesimally small cylindrical Gaussian surface surrounds point P, which is on the surface of

the conductor. The field E→ is perpendicular to the surface of the conductor outside the conductor and vanishes

within it.

Example 6.9

Electric Field of a Conducting Plate

The infinite conducting plate in Figure 6.40 has a uniform surface charge density σ . Use Gauss’ law to find the

electric field outside the plate. Compare this result with that previously calculated directly.

Figure 6.40 A side view of an infinite conducting plate and
Gaussian cylinder with cross-sectional area A.
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Strategy

For this case, we use a cylindrical Gaussian surface, a side view of which is shown.

Solution

The flux calculation is similar to that for an infinite sheet of charge from the previous chapter with one major

exception: The left face of the Gaussian surface is inside the conductor where E→ = 0
→

, so the total flux

through the Gaussian surface is EA rather than 2EA. Then from Gauss’ law,

EA = σA
ε0

and the electric field outside the plate is

E = σ
ε0

.

Significance

This result is in agreement with the result from the previous section, and consistent with the rule stated above.

Example 6.10

Electric Field between Oppositely Charged Parallel Plates

Two large conducting plates carry equal and opposite charges, with a surface charge density σ of magnitude

6.81 × 10−7 C/m2, as shown in Figure 6.41. The separation between the plates is l = 6.50 mm . What is the

electric field between the plates?

Figure 6.41 The electric field between oppositely charged
parallel plates. A test charge is released at the positive plate.
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Strategy

Note that the electric field at the surface of one plate only depends on the charge on that plate. Thus, apply
E = σ/ε0 with the given values.

Solution

The electric field is directed from the positive to the negative plate, as shown in the figure, and its magnitude is
given by

E = σ
ε0

= 6.81 × 10−7 C/m2

8.85 × 10−12 C2 /N m2 = 7.69 × 104 N/C.

Significance

This formula is applicable to more than just a plate. Furthermore, two-plate systems will be important later.

Example 6.11

A Conducting Sphere

The isolated conducting sphere (Figure 6.42) has a radius R and an excess charge q. What is the electric field
both inside and outside the sphere?

Figure 6.42 An isolated conducting sphere.

Strategy

The sphere is isolated, so its surface change distribution and the electric field of that distribution are spherically

symmetrical. We can therefore represent the field as E→ = E(r) r̂ . To calculate E(r), we apply Gauss’s law over

a closed spherical surface S of radius r that is concentric with the conducting sphere.

Solution

Since r is constant and n̂ = r̂ on the sphere,

∮
S

E→ · n̂ dA = E(r)∮
S

dA = E(r) 4πr2.

For r < R , S is within the conductor, so qenc = 0, and Gauss’s law gives

E(r) = 0,
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6.6

as expected inside a conductor. If r > R , S encloses the conductor so qenc = q. From Gauss’s law,

E(r) 4πr2 = q
ε0

.

The electric field of the sphere may therefore be written as

E→ = 0
→

(r < R),

E→ = 1
4πε0

q
r2 r̂ (r ≥ R).

Significance

Notice that in the region r ≥ R , the electric field due to a charge q placed on an isolated conducting sphere of

radius R is identical to the electric field of a point charge q located at the center of the sphere. The difference
between the charged metal and a point charge occurs only at the space points inside the conductor. For a point
charge placed at the center of the sphere, the electric field is not zero at points of space occupied by the sphere,
but a conductor with the same amount of charge has a zero electric field at those points (Figure 6.43). However,
there is no distinction at the outside points in space where r > R , and we can replace the isolated charged

spherical conductor by a point charge at its center with impunity.

Figure 6.43 Electric field of a positively charged metal
sphere. The electric field inside is zero, and the electric field
outside is same as the electric field of a point charge at the
center, although the charge on the metal sphere is at the surface.

Check Your Understanding How will the system above change if there are charged objects external to
the sphere?

For a conductor with a cavity, if we put a charge +q inside the cavity, then the charge separation takes place in the

conductor, with −q amount of charge on the inside surface and a +q amount of charge at the outside surface (Figure

6.44(a)). For the same conductor with a charge +q outside it, there is no excess charge on the inside surface; both the

positive and negative induced charges reside on the outside surface (Figure 6.44(b)).

272 Chapter 6 | Gauss's Law

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



Figure 6.44 (a) A charge inside a cavity in a metal. The distribution of charges
at the outer surface does not depend on how the charges are distributed at the
inner surface, since the E-field inside the body of the metal is zero. That
magnitude of the charge on the outer surface does depend on the magnitude of the
charge inside, however. (b) A charge outside a conductor containing an inner
cavity. The cavity remains free of charge. The polarization of charges on the
conductor happens at the surface.

If a conductor has two cavities, one of them having a charge +qa inside it and the other a charge −qb, the polarization

of the conductor results in −qa on the inside surface of the cavity a, +qb on the inside surface of the cavity b, and

qa − qb on the outside surface (Figure 6.45). The charges on the surfaces may not be uniformly spread out; their spread

depends upon the geometry. The only rule obeyed is that when the equilibrium has been reached, the charge distribution in
a conductor is such that the electric field by the charge distribution in the conductor cancels the electric field of the external
charges at all space points inside the body of the conductor.

Figure 6.45 The charges induced by two equal and opposite
charges in two separate cavities of a conductor. If the net charge
on the cavity is nonzero, the external surface becomes charged
to the amount of the net charge.
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area vector

cylindrical symmetry

electric flux

flux

free electrons

Gaussian surface

planar symmetry

spherical symmetry

CHAPTER 6 REVIEW

KEY TERMS
vector with magnitude equal to the area of a surface and direction perpendicular to the surface

system only varies with distance from the axis, not direction

dot product of the electric field and the area through which it is passing

quantity of something passing through a given area

also called conduction electrons, these are the electrons in a conductor that are not bound to any
particular atom, and hence are free to move around

any enclosed (usually imaginary) surface

system only varies with distance from a plane

system only varies with the distance from the origin, not in direction

KEY EQUATIONS
Definition of electric flux, for uniform electric field Φ = E→ · A

→
→ EA cos θ

Electric flux through an open surface Φ = ∫
S

E→ · n̂ dA = ∫
S

E→ · d A
→

Electric flux through a closed surface Φ = ∮
S

E→ · n̂ dA = ∮
S

E→ · d A
→

Gauss’s law Φ = ∮
S

E→ · n̂ dA = qenc
ε0

Gauss’s Law for systems with symmetry Φ = ∮
S

E→ · n̂ dA = E∮
S

dA = EA = qenc
ε0

The magnitude of the electric field just outside the surface
of a conductor

E = σ
ε0

SUMMARY

6.1 Electric Flux

• The electric flux through a surface is proportional to the number of field lines crossing that surface. Note that this
means the magnitude is proportional to the portion of the field perpendicular to the area.

• The electric flux is obtained by evaluating the surface integral

Φ = ∮
S

E→ · n̂ dA = ∮
S

E→ · d A
→

,

where the notation used here is for a closed surface S.

6.2 Explaining Gauss’s Law

• Gauss’s law relates the electric flux through a closed surface to the net charge within that surface,

Φ = ∮
S

E→ · n̂ dA = qenc
ε0

,

where qenc is the total charge inside the Gaussian surface S.
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• All surfaces that include the same amount of charge have the same number of field lines crossing it, regardless of
the shape or size of the surface, as long as the surfaces enclose the same amount of charge.

6.3 Applying Gauss’s Law

• For a charge distribution with certain spatial symmetries (spherical, cylindrical, and planar), we can find a Gaussian

surface over which E→ · n̂ = E , where E is constant over the surface. The electric field is then determined with

Gauss’s law.

• For spherical symmetry, the Gaussian surface is also a sphere, and Gauss’s law simplifies to 4πr2 E = qenc
ε0

.

• For cylindrical symmetry, we use a cylindrical Gaussian surface, and find that Gauss’s law simplifies to

2πrLE = qenc
ε0

.

• For planar symmetry, a convenient Gaussian surface is a box penetrating the plane, with two faces parallel to the

plane and the remainder perpendicular, resulting in Gauss’s law being 2AE = qenc
ε0

.

6.4 Conductors in Electrostatic Equilibrium

• The electric field inside a conductor vanishes.

• Any excess charge placed on a conductor resides entirely on the surface of the conductor.

• The electric field is perpendicular to the surface of a conductor everywhere on that surface.

• The magnitude of the electric field just above the surface of a conductor is given by E = σ
ε0

.

CONCEPTUAL QUESTIONS

6.1 Electric Flux

1. Discuss how to orient a planar surface of area A in a
uniform electric field of magnitude E0 to obtain (a) the

maximum flux and (b) the minimum flux through the area.

2. What are the maximum and minimum values of the flux
in the preceding question?

3. The net electric flux crossing a closed surface is always
zero. True or false?

4. The net electric flux crossing an open surface is never
zero. True or false?

6.2 Explaining Gauss’s Law

5. Two concentric spherical surfaces enclose a point
charge q. The radius of the outer sphere is twice that of
the inner one. Compare the electric fluxes crossing the two
surfaces.

6. Compare the electric flux through the surface of a cube
of side length a that has a charge q at its center to the flux
through a spherical surface of radius a with a charge q at its
center.

7. (a) If the electric flux through a closed surface is zero,
is the electric field necessarily zero at all points on the
surface? (b) What is the net charge inside the surface?

8. Discuss how Gauss’s law would be affected if the

electric field of a point charge did not vary as 1/r2.

9. Discuss the similarities and differences between the
gravitational field of a point mass m and the electric field of
a point charge q.

10. Discuss whether Gauss’s law can be applied to other
forces, and if so, which ones.

11. Is the term E→ in Gauss’s law the electric field

produced by just the charge inside the Gaussian surface?

12. Reformulate Gauss’s law by choosing the unit normal
of the Gaussian surface to be the one directed inward.

6.3 Applying Gauss’s Law

13. Would Gauss’s law be helpful for determining the
electric field of two equal but opposite charges a fixed
distance apart?
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14. Discuss the role that symmetry plays in the application
of Gauss’s law. Give examples of continuous charge
distributions in which Gauss’s law is useful and not useful
in determining the electric field.

15. Discuss the restrictions on the Gaussian surface used
to discuss planar symmetry. For example, is its length
important? Does the cross-section have to be square? Must
the end faces be on opposite sides of the sheet?

6.4 Conductors in Electrostatic Equilibrium

16. Is the electric field inside a metal always zero?

17. Under electrostatic conditions, the excess charge on a
conductor resides on its surface. Does this mean that all the
conduction electrons in a conductor are on the surface?

18. A charge q is placed in the cavity of a conductor
as shown below. Will a charge outside the conductor
experience an electric field due to the presence of q?

19. The conductor in the preceding figure has an excess
charge of – 5.0 µC . If a 2.0-µC point charge is placed

in the cavity, what is the net charge on the surface of the
cavity and on the outer surface of the conductor?

PROBLEMS

6.1 Electric Flux

20. A uniform electric field of magnitude 1.1 × 104 N/C
is perpendicular to a square sheet with sides 2.0 m long.
What is the electric flux through the sheet?

21. Calculate the flux through the sheet of the previous
problem if the plane of the sheet is at an angle of 60° to the

field. Find the flux for both directions of the unit normal to
the sheet.

22. Find the electric flux through a rectangular area
3 cm × 2 cm between two parallel plates where there is

a constant electric field of 30 N/C for the following
orientations of the area: (a) parallel to the plates, (b)
perpendicular to the plates, and (c) the normal to the area
making a 30° angle with the direction of the electric field.

Note that this angle can also be given as 180° + 30°.

23. The electric flux through a square-shaped area of side
5 cm near a large charged sheet is found to be

3 × 10−5 N · m2 /C when the area is parallel to the plate.

Find the charge density on the sheet.

24. Two large rectangular aluminum plates of area

150 cm2 face each other with a separation of 3 mm

between them. The plates are charged with equal amount of
opposite charges, ±20 µC . The charges on the plates face

each other. Find the flux through a circle of radius 3 cm

between the plates when the normal to the circle makes an
angle of 5° with a line perpendicular to the plates. Note

that this angle can also be given as 180° + 5°.

25. A square surface of area 2 cm2 is in a space of

uniform electric field of magnitude 103 N/C . The amount

of flux through it depends on how the square is oriented
relative to the direction of the electric field. Find the
electric flux through the square, when the normal to it
makes the following angles with electric field: (a) 30° , (b)

90° , and (c) 0° . Note that these angles can also be given

as 180° + θ .

26. A vector field is pointed along the z-axis,

v→ = α
x2 + y2 ẑ . (a) Find the flux of the vector field

through a rectangle in the xy-plane between a < x < b and

c < y < d . (b) Do the same through a rectangle in the

yz-plane between a < z < b and c < y < d . (Leave your

answer as an integral.)

27. Consider the uniform electric field

E→ = (4.0 j
^

+ 3.0 k̂ ) × 103 N/C. What is its electric

flux through a circular area of radius 2.0 m that lies in the
xy-plane?

28. Repeat the previous problem, given that the circular
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area is (a) in the yz-plane and (b) 45° above the xy-plane.

29. An infinite charged wire with charge per unit length λ
lies along the central axis of a cylindrical surface of radius
r and length l. What is the flux through the surface due to
the electric field of the charged wire?

6.2 Explaining Gauss’s Law

30. Determine the electric flux through each surface
whose cross-section is shown below.

31. Find the electric flux through the closed surface whose
cross-sections are shown below.

32. A point charge q is located at the center of a cube
whose sides are of length a. If there are no other charges in
this system, what is the electric flux through one face of the
cube?

33. A point charge of 10 µC is at an unspecified location
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inside a cube of side 2 cm. Find the net electric flux though
the surfaces of the cube.

34. A net flux of 1.0 × 104 N · m2 /C passes inward

through the surface of a sphere of radius 5 cm. (a) How
much charge is inside the sphere? (b) How precisely can we
determine the location of the charge from this information?

35. A charge q is placed at one of the corners of a cube of
side a, as shown below. Find the magnitude of the electric
flux through the shaded face due to q. Assume q > 0 .

36. The electric flux through a cubical box 8.0 cm on

a side is 1.2 × 103 N · m2 /C. What is the total charge

enclosed by the box?

37. The electric flux through a spherical surface is

4.0 × 104 N · m2 /C. What is the net charge enclosed by

the surface?

38. A cube whose sides are of length d is placed in a

uniform electric field of magnitude E = 4.0 × 103 N/C
so that the field is perpendicular to two opposite faces of
the cube. What is the net flux through the cube?

39. Repeat the previous problem, assuming that the
electric field is directed along a body diagonal of the cube.

40. A total charge 5.0 × 10−6 C is distributed uniformly

throughout a cubical volume whose edges are 8.0 cm long.
(a) What is the charge density in the cube? (b) What is
the electric flux through a cube with 12.0-cm edges that
is concentric with the charge distribution? (c) Do the same
calculation for cubes whose edges are 10.0 cm long and 5.0
cm long. (d) What is the electric flux through a spherical
surface of radius 3.0 cm that is also concentric with the
charge distribution?

6.3 Applying Gauss’s Law

41. Recall that in the example of a uniform charged

sphere, ρ0 = Q/(4
3πR3). Rewrite the answers in terms of

the total charge Q on the sphere.

42. Suppose that the charge density of the spherical charge
distribution shown in Figure 6.23 is ρ(r) = ρ0 r/R for

r ≤ R and zero for r > R. Obtain expressions for the

electric field both inside and outside the distribution.

43. A very long, thin wire has a uniform linear charge
density of 50 µC/m. What is the electric field at a distance

2.0 cm from the wire?

44. A charge of −30 µC is distributed uniformly

throughout a spherical volume of radius 10.0 cm.
Determine the electric field due to this charge at a distance
of (a) 2.0 cm, (b) 5.0 cm, and (c) 20.0 cm from the center
of the sphere.

45. Repeat your calculations for the preceding problem,
given that the charge is distributed uniformly over the
surface of a spherical conductor of radius 10.0 cm.

46. A total charge Q is distributed uniformly throughout
a spherical shell of inner and outer radii r1 and r2,
respectively. Show that the electric field due to the charge
is

E→ = 0
→

(r ≤ r1);

E→ = Q
4πε0 r2

⎛

⎝
⎜ r3 − r1

3

r2
3 − r1

3

⎞

⎠
⎟ r̂ (r1 ≤ r ≤ r2);

E→ = Q
4πε0 r2 r̂ (r ≥ r2).

47. When a charge is placed on a metal sphere, it ends up
in equilibrium at the outer surface. Use this information to
determine the electric field of +3.0 µC charge put on a

5.0-cm aluminum spherical ball at the following two points
in space: (a) a point 1.0 cm from the center of the ball (an
inside point) and (b) a point 10 cm from the center of the
ball (an outside point).

48. A large sheet of charge has a uniform charge density

of 10 µC/m2 . What is the electric field due to this charge

at a point just above the surface of the sheet?

49. Determine if approximate cylindrical symmetry holds
for the following situations. State why or why not. (a) A
300-cm long copper rod of radius 1 cm is charged with
+500 nC of charge and we seek electric field at a point 5
cm from the center of the rod. (b) A 10-cm long copper rod
of radius 1 cm is charged with +500 nC of charge and we
seek electric field at a point 5 cm from the center of the rod.
(c) A 150-cm wooden rod is glued to a 150-cm plastic rod
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to make a 300-cm long rod, which is then painted with a
charged paint so that one obtains a uniform charge density.
The radius of each rod is 1 cm, and we seek an electric field
at a point that is 4 cm from the center of the rod. (d) Same
rod as (c), but we seek electric field at a point that is 500
cm from the center of the rod.

50. A long silver rod of radius 3 cm has a charge of
−5 µC/cm on its surface. (a) Find the electric field at a

point 5 cm from the center of the rod (an outside point). (b)
Find the electric field at a point 2 cm from the center of the
rod (an inside point).

51. The electric field at 2 cm from the center of long
copper rod of radius 1 cm has a magnitude 3 N/C and
directed outward from the axis of the rod. (a) How much
charge per unit length exists on the copper rod? (b) What
would be the electric flux through a cube of side 5 cm
situated such that the rod passes through opposite sides of
the cube perpendicularly?

52. A long copper cylindrical shell of inner radius 2 cm
and outer radius 3 cm surrounds concentrically a charged
long aluminum rod of radius 1 cm with a charge density
of 4 pC/m. All charges on the aluminum rod reside at its
surface. The inner surface of the copper shell has exactly
opposite charge to that of the aluminum rod while the
outer surface of the copper shell has the same charge as
the aluminum rod. Find the magnitude and direction of the
electric field at points that are at the following distances
from the center of the aluminum rod: (a) 0.5 cm, (b) 1.5 cm,
(c) 2.5 cm, (d) 3.5 cm, and (e) 7 cm.

53. Charge is distributed uniformly with a density ρ
throughout an infinitely long cylindrical volume of radius
R. Show that the field of this charge distribution is directed
radially with respect to the cylinder and that

E = ρr
2ε0

(r ≤ R);

E = ρR2

2ε0 r (r ≥ R).

54. Charge is distributed throughout a very long
cylindrical volume of radius R such that the charge density
increases with the distance r from the central axis of the
cylinder according to ρ = αr, where α is a constant.

Show that the field of this charge distribution is directed
radially with respect to the cylinder and that

E = αr2

3ε0
(r ≤ R);

E = αR3

3ε0 r (r ≥ R).

55. The electric field 10.0 cm from the surface of a copper
ball of radius 5.0 cm is directed toward the ball’s center

and has magnitude 4.0 × 102 N/C. How much charge is

on the surface of the ball?

56. Charge is distributed throughout a spherical shell of
inner radius r1 and outer radius r2 with a volume density

given by ρ = ρ0 r1/r, where ρ0 is a constant. Determine

the electric field due to this charge as a function of r, the
distance from the center of the shell.

57. Charge is distributed throughout a spherical volume of

radius R with a density ρ = αr2, where α is a constant.

Determine the electric field due to the charge at points both
inside and outside the sphere.

58. Consider a uranium nucleus to be sphere of radius

R = 7.4 × 10−15 m with a charge of 92e distributed

uniformly throughout its volume. (a) What is the electric

force exerted on an electron when it is 3.0 × 10−15 m
from the center of the nucleus? (b) What is the acceleration
of the electron at this point?

59. The volume charge density of a spherical charge
distribution is given by ρ(r) = ρ0 e−αr, where ρ0 and

α are constants. What is the electric field produced by this

charge distribution?

6.4 Conductors in Electrostatic Equilibrium

60. An uncharged conductor with an internal cavity is
shown in the following figure. Use the closed surface S
along with Gauss’ law to show that when a charge q is
placed in the cavity a total charge –q is induced on the inner
surface of the conductor. What is the charge on the outer
surface of the conductor?

Figure 6.46 A charge inside a cavity of a metal. Charges at
the outer surface do not depend on how the charges are
distributed at the inner surface since E field inside the body of
the metal is zero.

61. An uncharged spherical conductor S of radius R has
two spherical cavities A and B of radii a and b, respectively
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as shown below. Two point charges +qa and +qb are

placed at the center of the two cavities by using non-
conducting supports. In addition, a point charge +q0 is

placed outside at a distance r from the center of the sphere.
(a) Draw approximate charge distributions in the metal
although metal sphere has no net charge. (b) Draw electric
field lines. Draw enough lines to represent all distinctly
different places.

62. A positive point charge is placed at the angle bisector
of two uncharged plane conductors that make an angle of
45°. See below. Draw the electric field lines.

63. A long cylinder of copper of radius 3 cm is charged
so that it has a uniform charge per unit length on its surface
of 3 C/m. (a) Find the electric field inside and outside
the cylinder. (b) Draw electric field lines in a plane
perpendicular to the rod.

64. An aluminum spherical ball of radius 4 cm is charged
with 5 µC of charge. A copper spherical shell of inner

radius 6 cm and outer radius 8 cm surrounds it. A total
charge of −8 µC is put on the copper shell. (a) Find the

electric field at all points in space, including points inside
the aluminum and copper shell when copper shell and
aluminum sphere are concentric. (b) Find the electric field
at all points in space, including points inside the aluminum
and copper shell when the centers of copper shell and
aluminum sphere are 1 cm apart.

65. A long cylinder of aluminum of radius R meters is
charged so that it has a uniform charge per unit length on its
surface of λ . (a) Find the electric field inside and outside

the cylinder. (b) Plot electric field as a function of distance
from the center of the rod.

66. At the surface of any conductor in electrostatic
equilibrium, E = σ/ε0. Show that this equation is

consistent with the fact that E = kq/r2 at the surface of a

spherical conductor.

67. Two parallel plates 10 cm on a side are given equal and

opposite charges of magnitude 5.0 × 10−9 C. The plates

are 1.5 mm apart. What is the electric field at the center of
the region between the plates?

68. Two parallel conducting plates, each of cross-sectional

area 400 cm2 , are 2.0 cm apart and uncharged. If

1.0 × 1012 electrons are transferred from one plate to the

other, what are (a) the charge density on each plate? (b) The
electric field between the plates?

69. The surface charge density on a long straight metallic
pipe is σ . What is the electric field outside and inside the

pipe? Assume the pipe has a diameter of 2a.

70. A point charge q = −5.0 × 10−12 C is placed at the

center of a spherical conducting shell of inner radius 3.5 cm
and outer radius 4.0 cm. The electric field just above the
surface of the conductor is directed radially outward and
has magnitude 8.0 N/C. (a) What is the charge density on
the inner surface of the shell? (b) What is the charge density
on the outer surface of the shell? (c) What is the net charge
on the conductor?

71. A solid cylindrical conductor of radius a is surrounded
by a concentric cylindrical shell of inner radius b. The
solid cylinder and the shell carry charges +Q and –Q,
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respectively. Assuming that the length L of both conductors
is much greater than a or b, determine the electric field as a
function of r, the distance from the common central axis of

the cylinders, for (a) r < a; (b) a < r < b; and (c) r > b.

ADDITIONAL PROBLEMS

72. A vector field E→ (not necessarily an electric field;

note units) is given by E→ = 3x2 k̂ . Calculate

∫
S

E→ · n̂ da, where S is the area shown below. Assume

that n̂ = k̂ .

73. Repeat the preceding problem, with

E→ = 2x i
^

+ 3x2 k̂ .

74. A circular area S is concentric with the origin, has

radius a, and lies in the yz-plane. Calculate ∫
S

E→ · n̂ dA

for E→ = 3z2 i
^

.

75. (a) Calculate the electric flux through the open

hemispherical surface due to the electric field E→ = E0 k̂
(see below). (b) If the hemisphere is rotated by 90° around

the x-axis, what is the flux through it?

76. Suppose that the electric field of an isolated point

charge were proportional to 1/r2 + σ rather than 1/r2.
Determine the flux that passes through the surface of a
sphere of radius R centered at the charge. Would Gauss’s
law remain valid?

77. The electric field in a region is given by

E→ = a/(b + cx) i
^

, where a = 200 N · m/C,
b = 2.0 m, and c = 2.0. What is the net charge enclosed

by the shaded volume shown below?

78. Two equal and opposite charges of magnitude Q are
located on the x-axis at the points +a and –a, as shown
below. What is the net flux due to these charges through
a square surface of side 2a that lies in the yz-plane and
is centered at the origin? (Hint: Determine the flux due
to each charge separately, then use the principle of
superposition. You may be able to make a symmetry
argument.)

79. A fellow student calculated the flux through the square
for the system in the preceding problem and got 0. What
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went wrong?

80. A 10 cm × 10 cm piece of aluminum foil of 0.1 mm

thickness has a charge of 20 µC that spreads on both

wide side surfaces evenly. You may ignore the charges on
the thin sides of the edges. (a) Find the charge density.
(b) Find the electric field 1 cm from the center, assuming
approximate planar symmetry.

81. Two 10 cm × 10 cm pieces of aluminum foil of

thickness 0.1 mm face each other with a separation of 5
mm. One of the foils has a charge of +30 µC and the other

has −30 µC . (a) Find the charge density at all surfaces,

i.e., on those facing each other and those facing away. (b)
Find the electric field between the plates near the center
assuming planar symmetry.

82. Two large copper plates facing each other have charge

densities ±4.0 C/m2 on the surface facing the other plate,

and zero in between the plates. Find the electric flux
through a 3 cm × 4 cm rectangular area between the

plates, as shown below, for the following orientations of the
area. (a) If the area is parallel to the plates, and (b) if the
area is tilted θ = 30° from the parallel direction. Note, this

angle can also be θ = 180° + 30°.

83. The infinite slab between the planes defined by
z = −a/2 and z = a/2 contains a uniform volume charge

density ρ (see below). What is the electric field produced

by this charge distribution, both inside and outside the
distribution?

84. A total charge Q is distributed uniformly throughout

a spherical volume that is centered at O1 and has a radius

R. Without disturbing the charge remaining, charge is
removed from the spherical volume that is centered at O2

(see below). Show that the electric field everywhere in the
empty region is given by

E→ = Q r→

4πε0 R3,

where r→ is the displacement vector directed from

O1 to O2.

85. A non-conducting spherical shell of inner radius a1

and outer radius b1 is uniformly charged with charged

density ρ1 inside another non-conducting spherical shell

of inner radius a2 and outer radius b2 that is also

uniformly charged with charge density ρ2 . See below.

Find the electric field at space point P at a distance r
from the common center such that (a) r > b2, (b)

a2 < r < b2, (c) b1 < r < a2, (d) a1 < r < b1, and

(e) r < a1 .

86. Two non-conducting spheres of radii R1 and R2

are uniformly charged with charge densities ρ1 and ρ2,
respectively. They are separated at center-to-center distance
a (see below). Find the electric field at point P located
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at a distance r from the center of sphere 1 and is in the
direction θ from the line joining the two spheres assuming

their charge densities are not affected by the presence of the
other sphere. (Hint: Work one sphere at a time and use the
superposition principle.)

87. A disk of radius R is cut in a non-conducting large
plate that is uniformly charged with charge density σ
(coulomb per square meter). See below. Find the electric
field at a height h above the center of the disk.
(h > > R, h < < l or w). (Hint: Fill the hole with

±σ.)

88. Concentric conducting spherical shells carry charges
Q and –Q, respectively (see below). The inner shell has
negligible thickness. Determine the electric field for (a)
r < a; (b) a < r < b; (c) b < r < c; and (d) r > c.

89. Shown below are two concentric conducting spherical
shells of radii R1 and R2 , each of finite thickness much

less than either radius. The inner and outer shell carry net
charges q1 and q2, respectively, where both q1 and q2

are positive. What is the electric field for (a) r < R1; (b)

R1 < r < R2; and (c) r > R2? (d) What is the net charge

on the inner surface of the inner shell, the outer surface of
the inner shell, the inner surface of the outer shell, and the
outer surface of the outer shell?

90. A point charge of q = 5.0 × 10−8 C is placed at

the center of an uncharged spherical conducting shell of
inner radius 6.0 cm and outer radius 9.0 cm. Find the
electric field at (a) r = 4.0 cm , (b) r = 8.0 cm , and (c)

r = 12.0 cm . (d) What are the charges induced on the

inner and outer surfaces of the shell?

CHALLENGE PROBLEMS

91. The Hubble Space Telescope can measure the energy
flux from distant objects such as supernovae and stars.
Scientists then use this data to calculate the energy emitted
by that object. Choose an interstellar object which scientists

have observed the flux at the Hubble with (for example,
Vega[3]), find the distance to that object and the size of
Hubble’s primary mirror, and calculate the total energy
flux. (Hint: The Hubble intercepts only a small part of the

3. http://adsabs.harvard.edu/abs/2004AJ....127.3508B
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total flux.)

92. Re-derive Gauss’s law for the gravitational field, with

g→ directed positively outward.

93. An infinite plate sheet of charge of surface charge
density σ is shown below. What is the electric field at

a distance x from the sheet? Compare the result of this
calculation with that of worked out in the text.

94. A spherical rubber balloon carries a total charge Q
distributed uniformly over its surface. At t = 0 , the radius

of the balloon is R. The balloon is then slowly inflated until

its radius reaches 2R at the time t0. Determine the electric

field due to this charge as a function of time (a) at the
surface of the balloon, (b) at the surface of radius R, and (c)
at the surface of radius 2R. Ignore any effect on the electric
field due to the material of the balloon and assume that the
radius increases uniformly with time.

95. Find the electric field of a large conducting plate
containing a net charge q. Let A be area of one side of
the plate and h the thickness of the plate (see below). The
charge on the metal plate will distribute mostly on the two
planar sides and very little on the edges if the plate is thin.
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